223 research outputs found

    Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing

    Get PDF
    We present a method for measuring the concentrations of ionized acceptors and donors in compensated p-type silicon at room temperature.Carrier lifetimemeasurements on silicon wafers that contain minute traces of iron allow the iron-acceptor pair formation rate to be determined, which in turn allows the acceptor concentration to be calculated. Coupled with an independent measurement of the resistivity and a mobility model that accounts for majority and minority impurity scatterings of charge carriers, it is then possible to also estimate the total concentration of ionized donors. The method is valid for combinations of different acceptor and donor species.D.M. is supported by an Australian Research Council fellowship. L.J.G. would like to acknowledge SenterNovem for support

    Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon

    No full text
    Interstitial iron in crystalline silicon has a much larger capture cross section for electrons than holes. According to the Shockley–Read–Hall model, the low-injection carrier lifetime in p-type silicon should therefore be much lower that in n-type silicon, while in high injection they should be equal. In this work we confirm this modeling using purposely iron-contaminated samples. A survey of other transition metal impurities in silicon reveals that those which tend to occupy interstitial sites at room temperature also have significantly larger capture cross sections for electrons. Since these are also the most probable metal point defects to occur during high temperature processing, using n-type wafers for devices such as solar cells may offer greater immunity to the effects of metal contaminants.This work has been supported by the Australian Research Council and The Netherlands Agency for Energy and the Environment

    Dynamics of light-induced FeB pair dissociation in crystalline silicon

    No full text
    The dynamics of light-induced dissociation of iron–boron (FeB) pairs in p-type crystalline silicon is investigated. The dissociation is observed to be a single-exponential process which is balanced with thermal repairing. The dissociation rate is proportional to the square of the carrier generation rate and the inverse square of the FeB concentration. This suggests that the dissociation process involves two recombination or electron capture events. A proportionality constant of 5×10⁻Âč⁔s describes the dissociation rate well in the absence of other significant recombination channels. The dissociation rate decreases in the presence of other recombination channels. These results can be used for reliable detection of iron in silicon devices and materials, and for further elucidation of the electronically driven FeB dissociation reaction.This work was supported by NOVEM (The Netherlands Agency for Energy and the Environment) and the Australian Research Council

    Sum rule for transport in a Luttinger liquid with long range interaction in the presence of an impurity

    Full text link
    We show that the non-linear dc transport in a Luttinger liquid with interaction of finite range in the presence of an impurity is governed by a sum rule which causes the charging energy to vanish.Comment: 5 pages, RevTeX, 1 figure, to be published in Europhysics Letter

    Non-Abelian phases, charge pumping, and quantum computation with Josephson junctions

    Full text link
    Non-Abelian geometric phases can be generated and detected in certain superconducting nanocircuits. Here we consider an example where the holonomies are related to the adiabatic charge dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic charge pumping and as an implementation of a quantum computer.Comment: 11 pages RevTex, 3 figures in eps format, revised versio

    Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment

    Full text link
    We observed current-voltage characteristics of superconducting single charge transistors with on-chip resistors of R about R_Q = h/4e^2 = 6.45 kOhm, which are explained in terms of Cooper-pair cotunneling. Both the effective strength of Josephson coupling and the cotunneling current are modulated by the gate-induced charge on the transistor island. For increasing values of the resistance R we found the Cooper pair current at small transport voltages to be dramatically suppressed.Comment: 4 pages and 2 figure

    Light-induced boron-oxygen defect generation in compensated p-type Czochralski silicon

    No full text
    The concentration of boron-oxygen defects generated in compensated p-type Czochralski silicon has been measured via carrier lifetime measurements taken before and after activating the defect with illumination. The rate of formation of these defects was also measured. Both the concentration and the rate were found to depend on the net doping rather than the total boron concentration. These results imply that the additional compensated boron exists in a form that is not able to bond with the oxygen dimers, thus prohibiting the formation of the defect. This could be explained by the presence of boron-phosphorus complexes, as proposed in previous work. Evidence for reduced carrier mobilities in compensated silicon is also presented, which has implications for photoconductance-based carrier lifetime measurements and solar cell performance.D.M. is supported by an Australian Research Council QEII Fellowship, L.J.G. acknowledges SenterNovem for support, and B.L. and J.S. acknowledge the support of the German Academic Exchange Service

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result

    Mode-Locking in Quantum-Hall-Effect Point Contacts

    Full text link
    We study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling Μ−1\nu ^{-1} an odd integer. Within the chiral Luttinger liquid model of edge states, the point contact dynamics is described by a driven damped quantum mechanical pendulum. In a semi-classical limit which ignores electron tunnelling, this model exhibits mode-locking, which corresponds to current plateaus in the I-V curve at integer multiples of I=eω/2πI= e\omega /2\pi, with ω\omega the ac drive angular frequency. By analyzing the full quantum model at non-zero Îœ\nu using perturbative and exact methods, we study the effect of quantum fluctuation on the mode-locked plateaus. For Îœ=1\nu=1 quantum fluctuations smear completely the plateaus, leaving no trace of the ac drive. For Μ≄1/2\nu \ge 1/2 smeared plateaus remain in the I-V curve, but are not centered at the currents I=neω/2πI=n e \omega /2\pi. For Îœ<1/2\nu < 1/2 rounded plateaus centered around the quantized current values are found. The possibility of using mode locking in FQHE point contacts as a current-to-frequency standard is discussed.Comment: 12 pages, 8 figures, minor change

    Quantum Phase Transitions in Josephson Junction Chains

    Full text link
    We investigate the quantum phase transition in a one-dimensional chain of ultra-small superconducting grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctuations; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.Comment: REVTeX+5 EPS figures, To appear in PRB Rapid
    • 

    corecore